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Daily diaries of respirator symptoms are apoIfu technique for detecting acute effects ofair pollution exposure. While
conceptually simple, these diary studies can be difficult to analyze. The daily symptom rates are highly correlated, even
after adjustment for covariates, and this lack of independence must be considered in the analysis. Possible approaches
include the use of incidence instead of prevalence rates and autoregressive models. Heterogeneity among subjects also in-
duces dependencies in the data. These can be addressed by stratification and by two-stage models such as those developed
by Korn and Whittemore. These approaches have been applied to two data sets: a cohort ofschool children participating
in the Harvard Six Cities Study and a cohort ofstudent nurses in Los Angeles. Both data sets provide evidence ofautocor-
relation and heterogeneity. Controlling for autocorrelation corrects the precision estimates, and because diary data are
usually positively autocorrelated, this leads to larger variance estimates. Controlling for heterogeneity among subjects
appears to increase the effect sizes for air pollution exposure. Preliminary results indicate associations between sulfur dioxide
and cough incidence in children and between nitrogen dioxide and phlegm incidence in student nurses.

Introduction
Quantitative risk assessment for criteria air pollutants raises

problems and issues that differ substantially from those involved
in assessment ofcarcinogens. Because there may be thresholds
for the effects of air pollutants on the lung, high/dose animal
exposure data cannot be easily extrapolated to human exposure
in the dose regimes of interest. While animal studies are quite
important in identifying possible effects and mechanisms, human
epidemiology is central to determining whether there are effects
at current ambient concentrations. Epidemiologic studies have
the advantage of being in the species and exposure range of
interest. They have the disadvantage of introducing greater
potential for confounding. The trade-off involves different types
of uncertainties. Extrapolation ofanimal studies over orders of
magnitude of exposure and across species introduces great
uncertainty into effect estimates. The greater certainty in effect
estimates afforded by epidemiology studies of criteria air
pollution is countered by an increased uncertainty about whether
the effect exists at all, or is due to or hidden by unobserved con-

founding factors.
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Diary studies, defined broadly as studies that record the health
status ofeach study participant repeatedly over time, provide a
powerful method for assessing the impact of short-term changes
in the environment on human health. If health status is reported
as the presence or absence ofeach of several symptoms, the data
consist of sets of sequences of binary outcomes, one for each
symptom and participant. The basic analytic objective, to
estimate the exposure-response model linking exposure and
symptom status, is complicated by the dependencies among
responses on successive days (autocorrelation) and among
responses ofthe same subject on different days (heterogeneity).
This paper illustrates methods for analyzing diary data that ad-
dress these complications and demonstrates their use by analyz-
ing data collected in two diary studies, one in children, and the
other in nursing students.
The methods described in this report model the incidence

rather than the prevalence ofsymptoms. Incidence is defined as
a positive report of symptom occurrence by an individual who
did not report that symptom on the previous day. This strategy
was chosen because the risk factors for acquiring an illess are not
necessarily the same as those that increase its duration. In addi-
tion, the use of incidence as an end point greatly reduces, but
does not eliminate, the autocorrelation in the data. The low
prevalence rates in our data precluded a separate model for the
relationship between air pollution and duration.
When the end point is symptom incidence, only subjects free

of the symptom on the previous day are at risk. This suggests a
relatively simple analysis, in which response rates on successive
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days were treated as independent observations. This type of
analysis will be called ordinary logistic regression in this paper.

Further investigation of the residuals from ordinary logistic
regression established, however, that the incidence rates had
detectable autocorrelation. Similarly, it is reasonable to expect
variability among subjects in the frequency of symptoms and,
possibly, in sensitivity to air pollution exposures. This variability
may be due to measurable risk factors, such as passive smoking,
gas stoves, and the presence of allergic conditions. We refer to
such risk factors as subject covariates. Methods for modeling
such dependencies are decribed in the modeling section and il-
lustrated in "Results."

Description of the Data Sets
Six Cities Diary Study
The Six Cities Study of Air Pollution and Health is a large

longitudinal study ofthe effects ofexposure to air pollutants on
the respiratory health ofboth children and adults (1,2). A cohort
of approximately 1800 children from six cities (Waterton,
Kingston-Harriman, TN; St. Louis, MO; Portage, WI; Stueben-
ville, OH; and Topeka, KS) was enrolled in a year-long diary
study in which parents completed a daily report on the child's
respiratory (and other) symptoms. For logistical reasons, the
diary study extended over4 school years (1984-1988). Air pollu-
tion concentrations were measured daily in each city during the
study. Information on parental smoking, type ofcooking stove,
and the child's respiratory illness history were obtained via
questionnaire.
The diary responses examined were upper respiratory illness

(URI) (any two of hoarseness, sore throat, and fever), lower
respiratory illness (LRI) (any two ofcough, chest pain, phlegm,
and wheeze), simple cough (without other symptoms), and any
cough (with or without other symptoms).
The incidence rates for all ofthe symptoms and symptom com-

plexes were low ranging from 0.2% (URI) to 1% (any cough).
This implied that the data on recurrence of symptoms on days
subsequent to a first report were very sparse. Thus, this report
focuses on the analysis ofincidence rates. Other more restrictive
definitions ofincidence rates. Other more restrictive definitions
of incidence were considered but had little effect on the analysis
because of the consistently low rate of symptom reporting.

Nurses Diary Study
A population beginning nursing school Los Angeles was

recruited for a study of viral diseases and other risk factors for
acute illness (3), Smoking histories and the presence ofasthma,
hay fever, and other allergic conditions were obtained. Daily
diaries ofacute respiratory symptoms were handed out and col-
lected each Monday for 3 years. The symptoms examined were
headache, cough, sore trat, phlegm, chest discomfort, and eye
irritation. Air pollution values were obtained from a monitor
within 2.5 miles ofthe school. Temperature was obtained from
a National Oceanic and Atmosphere Administration (NOAA)
site within a mile of the monitor. To be eligible for the study,
students must be resident at the nursing school. Since they liv-
ed, studied, and worked at the same location, there was less
mobility than would be found in a general population, leading to

more precise exposure estimates. To maintain this exposure pro-
file, subjects were dropped from the study ifthey moved offcam-
pus. Over the course ofthe 3 years, the size ofthe study popula-
tion decreased from over 100 to 35 as students moved away from
school.

Models for the Analysis of Diary Data
This section describes methods for analyzing sequences of in-

cidence rates when the objective is to model the effects of
temperature, air pollution, and other time-varying variables on
the incidence rate. Mismodeling the mean or the covariance
structure ofthe sequences can lead to misleading results about
environmental risk.
The data consist ofsequences [(xjYj, 1 . j < TX, where x' =

(x],. .. ,xjp) is a vector ofp covariates affecting all subjects in the
study at thejth occasion and Y, is the number of incident cases
of the symptom at the jth occasion among the n, subjects who
were symptom-free at the previous occasion. Y, is assumed to
have a binomial distribution with parameters n1 and pj where p,
is the marginal probability ofsymptom incidence for any subject
on day j.

This discussion focuses on the logistic model and its exten-
sions. The logistic model is often used to model binary or
binomial outcomes because the parameters can be interpreted as
the logarithms ofodds ratios and because computing is relatively
simple. The logistic model is defined by

pj = exp[B'xj ] / (1 + exp[W'xj I),

or equivalently,

logit(pj ) = B'x.

Both the number of subjects at risk at any occasion, nj, and the
total number of occasions, T, can be large in diary studies.
The goal ofthe analysis is to estimate the effects of the pollu-

tion variables on incidence rates while controlling for other fac-
tors, including autocorrelation and subject heterogeneity.
Autocorrelation (or serial correlation) refers to the tendency for
incidence rates close together in time to be positively correlated.
Autocorrelation could be due to state dependence across in-
dividuals (e.g., symptoms may occur because other subjects had
the symptom on the same or previous days), and/or time-
dependent omitted covariates (which tend to be highly correlated
in time).

Heterogeneity, or variability among individuals in the pro-
bability of response, induces positive correlation among
responses on the same individual. Heterogeneity can be due to
observable or unobservable within-subject covariates (such as
smoking level or illness history), which vary across individuals,
or different thresholds, susceptibilities, or reporting behavior
across individuals. Differences in reporting behavior could oc-
cur, for example, if participants varied in the severity of symp-
toms considered reportable.

Failure to account for either autocorrelation or heterogeneity
in the analysis can lead to errors in inference similar to those
resulting from the naive use ofstandard methods in problems in-
volving misspecified covariates, missing data, or covariate
measurement errors. In particular, mismodeling can result in
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failure to detect important effects as a consequence of biased
point and interval estimates and incorrect hypothesis testing.
Diary data typically have positively correlated outcomes,
yielding less information than the same number ofindependent
responses, so at a minimum the usual standard error estimates
may need to be inflated.

Modeling Autocorrelation
It is natural to begin the analysis ofincidence rates with models

that assume independence of symptom rates on different days.
Preliminary analysis ofboth diary studies established, however,
that residuals from regression models including important
covariates were autocorrelate and that this autocorrelation could
not be explained by other measured time-varying covariates.
Thus, refinements ofthe model were needed to account for this
autocorrelation. This section describes several methods for
modeling autocorrelation.

Using Lagged Prevalence or Incidence to Adjustfor State
Dependence. One possibility is that the probability ofsymptom
occurrence on a given day depends on the participant's symptom
status on previous days. When modeling the prevalence ofsymp-
toms, Muenz and Rubinstein (4), Cox (5), and Korn and Whit-
temore (6) used the subject's symptom status on the previous day
as a covariate. This approach is not relevant to the analysis of in-
cidence data, however, because all subjects at risk were, by
definition, symptom-free on the previous day. As an extension of
this idea, however, one could assume that the probability of
symptom occurrence for a study participant depends on the
symptom status ofothers in the population on previous days. This
dependence could rise if, for example, the symptoms were due
to infectious diseases and risk of infection increased with the
prevalence of the disease. Such epidemic or clustering effects
could be modeled by assuming that

pi = exp[tl'xj + Xzj ]/(1 + expUl3'xj + pz, 1)

where z,, the added covariate, is the lagged prevalence rate in
the study population.
The technique of including lagged prevalence rates in the

model should be used cautiously, especially when assessing the
weak effect of an autocorrelated environmental variable. The
pollutant variable under study may also be autocorrelated, and
the resulting collinearity will cause bias toward 0 in the coeffi-
cient ofthe pollutant variable iflagged prevalence is added to the
model. Adding lagged prevalence or incidence to themodel is on-
ly justified ifthere is a biological rationale for doing so, as with
certain infectious diseases.
Using Residuals to Modify the Response Probabilities.

Observed autocorrelation in incidence rates need not be due to
state dependence. Suppose, for example, that there is a time-
dependent omitted covriate. In general, such time-dependent
variables have an autocorrelation structure oftheir own that in-
duces autocorrelation in the residuals ofthe incidence model. As
the residuals notonly includearandomcomponentbutare also a
functionoftheomitted variable, the residuals (orafunctionofthe
residuals) can serve as a surrogate for the omitted covariate (7).

If the nj are relatively large, using the central limit theorem,
we have that approximately

Yj /nj - N(pp, pj(1-pj)/nj).

If the errors [(Yj/n,) - pj] are autocorrelated, modifying the
marginal probabilities based on an autoregressive model may be
appropriate. As before, let

pi = exp[B'xj ]/(1 + exp[W'xj])
and let

p* =pi + 0(ar/aT-1)((Yi-1/nj-.) - pj-l )

where j2 = pj(l-p,)/nj. The ajlaj, term controls for the
heteroscedasticity ofthe symptom rates. Preliminary work sug-
gests that this modification reduces and may eliminate the need
for restrictions on the admissable range of values of 4, but this
issue is still under investigation. These models can be generaliz-
ed to include second or higher order autoregressive (AR) terms.
Because the autoregressive elements are added on the probability
scale, we will refer to these models as additive AR models.
Another possibility is to assume an additive contribution on

the logit scale. In particular, we could model

logit(p;) = B'x; + o(aj /aj_l )((Yj_l /nj_l) - pj_,)
This model clearly imposes no restrictions on the allowable
range of4. Further obvious modifications could be made to ac-
commodate higher order autoregressive terms. For convenience
we refer to these models as multiplicative AR models, since the
autoregressive terms occur in the exponent.

In practice, it can be difficult to determine which
autoregressive scheme is best. The choice may sometimes be in-
fluenced by the statistical software. The choice may influence
parameter interpretation. The f3 parameters have more of a
marginal interpretation when the residual effects are added on the
probability scale and more ofa conditional interpretation ifthe
effects are added on the logit scale. Each ofthese schemes has the
desired effect of reducing autocorrelation of the residuals.

Covariance Models to Accommodate Autorcorrelaion Ef-
fects. Most, if not all, of the methods described thus far for
modeling autocorrelation lead to changes in the interpretation of
regression coefficients for the variables under study- because
these coefficients become partial regression coefficients adjusted
not only for other covariates but for the residuals included in the
model. Obtaining a marginal probability requires integrating
over the distribution ofthe residuals (although this may be trivial
for the additiveAR model). Liang and Zeger (8) and Zeger and
Liang (9) have described methods for fitting logistic models to
the symptom rates while taking account ofthe correlation among
symptom rates on different days. A key fixture of this approach
is that the model is marginally logistic, with the autocorrelation
in the covariance. This gives their coefficients the usual logistic
interpretation. In addition, if multiple time series are available,
as in a diary study, the Liang and Zeger approaches yield robust
variance estimates that are consistent even if the covariance is
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misspecified. The robust estimates are considerably more com-
putationally intensive, however. Liang and Zeger methods can
be more efficient than estimators assuming independence ofall
the observations. The case of first or higher order autocorrela-
tion represents a special case of their method, which promises
to be very useful in the analysis of diary data. These robust
estimators and covariance matrix estimates deserve more serious
attention in many epidemiological applications.

Models for Heterogeneity
This section focuses on the effects of individual heterogenei-

ty, assuming that the residuals are not autocorrelated in time. It
is also possible to construct models that combine the autocorrela-
tion and subject heterogeneity effects.
The simplest method for analyzing incidence is to combine the

responses from all subjects at each occasion, basically assum-
ing that each subject is identical. This greatly simplifies the com-
puting, which depends only on the order of T, the number of
response times, not on the number of subjects. This method may
be appropriate when a sample ofhomogeneous subjects is chosen
randomly from a population of interest.

Subject heterogeneity may result from differences in the
subiect covariates. Since these covariates generally do not change
during the diary period, a considerable simplification is ob-
tainable here as well. Collapsing over the T times, we obtain a
count W,, the number of incidents during the period for the ith
subject. This may be well modeled by a Poisson regression

E(Wd) = exp[B'u, + InNi]
where u; = [u,,....uJ is a vector ofq covariates affecting subject
i and Ni is the number of days the ith subject was eligible to be
incident. Again, the computing is considerably simplified, and
depends only on the order N of the number of subjects.

If subject covariates are identified that explain differences in
individual response rates, the data can be stratified by those
covariates. Ifwe assume homogeneity within each strata, which
will often be a reasonable assumption, then we can again com-
bine all the responses from all subjects within each strata at each
time j. Our model then has responses in the Yj, responses in the
kth strata at time j out of the ni, subjects at risk. Yj, is assumed to
be binomially distributed with parameters nJk and

Pjk = exp[B'lx + r9vk]/(l + exp[B'xj + 'T9Vk]
where x; denotes the time varying covariates and v, the
stratification variables. Interactions between air pollution and
strata are an obvious generalization.
Random Effects Models (Vawying Slopes and Intercepts). If

T is large, we may observe heterogeneity among subjects in
response rates that is not fully explained by the within-subject
covariates. Subjects may also vary in their sensitivity to pollutant
exposures, as measured by the regression coefficients. Korn and
Whittemore (6) proposed a two-stage analysis based on the
assumption that each subject's sequence of binary responses
follows a logistic model but with coefficients that vary among
subjects. Specifically, they assume a parameter vector, 8,, for
individual i, so that the conditional probability of response for
the ith subject at the jth response time is given by

Pij Ili = exp[Bi'xj ]/(1 + exp[i'xix, ]).

They then assume that the (3, arise from a multivariate normal
distribution. Their estimation technique also proceeds in two
stages. First, estimate flP for the ith subject using ordinary
logistic regression. Ifthe number ofobservations on the ith sub-
ject is sufficientiy large, the asymptotic distribution off is ap-
proximated by

Bi I ni - N(Bi, Vi),

where Vi is the usual information-based variance-covariance
matrix. Then, in the second stage, we assume

Bi IB,E N(,E)
and so

A

Bi I,E - N(B, E + Vi),
and fl and E are estimated from the averages and sums ofsquares
of thefl and V, using the method of moments.
Here f and E are the population parameters and are viewed

as the primary parameters of interest. The method above in-
directy accounts for within-subject covariates through the varia-
tion in the coefficients. Weighted least-squares regression could
also be used to assess the effects of subject characteristics, such
as passive smoking or allergy history, on the individual regres-
sion coefficients, j.

This two-stage estimation method is relatively easy to imple-
ment but has two statistical drawbacks, in addition to the com-
putational intensity. First, the asymptotic normality assumption
ofA P:-N(f,i, V) holds only when there is a sufficiently large
number ofobservations per subject and the response rate for each
is sufficiently high. In other cases the model is suspect. In par-
ticular, they are not appropriate when response rates are very
low, as is the case in the Six Cities Diary Study. In fact, for con-
sistency and asymptotic normality ofthe estimates, we need that
both T -- oXand N -X oo. Second,-this estimation method is not
the most efficient. More efficient (but more computationally in-
tensive) multivariate random effects models are available (10).
Random Intercept Models (Common Slopes). An alternative

approach is to assume that the regression coefficients are cons-
tant across subjects but that each subject has a different underly-
ing response rate (as measured by the intercept). This formula-
tion allows individual heterogeneity due to observed or
unobserved subject covariates, differences in reporting, or other
reasons, but information regarding fl, the primary parameter
vector of interest, is strengthened by combining information
across subjects.

In particular, we postulate that responses from the ith subject
follow the logistic model with success probability

PU ai = exp[ai + B'xj]/(l + exp[i + B'xj ])
where a. denotes the intercept for the ith subject.

If one is not interested in the individual intercepts, a condi-
tional maximum likelihood approach can be used. The major
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virtue of maximizing the conditional likelihood is that this
estimator is consistent and aysmptotially normal in both the large
strata and sparse strata cases, i.e., whenever T -X co or N -X00
(or both). The major difficulty is that programs to compute con-
ditional maximum likelihood estimates do not accept the im-
mense amount ofdata rising from diary studies. For example, if
a subject is followed daily for 1 year and has 20 days ofsymptom
incidence, then there are 36sC20- 4.26 x 1032 terms to be summ-
ed in the denominator of this subject's contribution to the
likelihood.
A second approach is to assume that the individual intercepts,

a,, arise from a common distribution such as the normal distribu-
tion and to use a mixture model for the random effects. Here,
however, the likelihood will involve integration thatcannot be per-
formed analytically, and itbecomes computationally intensive to
approximate the integrals. Alternative approaches for varying in-
tercept models that involve easier computation andallow estima-
tion of the individual intercepts are under development.

LOGIT OF COUGH INCIDENCE

_4

Results
This section illustrates some of the methods discussed in the

previous section by applying them to the two sets ofdiary data.
The analyses from the Six Cities Diary are based on data from
three cities, Watertown, MA; Kingston-Harriman, TN; and St.
Louis, MO. Data for the other three cities are still being collected
and processed.
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Evidence for Autocorrelation of Incidence Rates
Autocorrelation of time series data should be considered on-

ly after controlling for the effects ofmeasured covariates. In the
Six Cities diary data, only one independent variable, temp-
erature, had strong and consistent effects on symptom rates. In
all analyses discussed in this report, the effects of temperature
were controlled by introducing temperature and the square of
temperature into the regression model. Each pollutant was in-
vestigated separately while controlling for the effects of
temperature in this way. Analyses not reported here established
that seasonal variables did not contribute significantly to the
model after the two temperature terms had been added. Here we
consider one set of analyses, those investigating the effects of
sulfur dioxide concentration on the incidence of any cough in
Watertown.

Figure 1 shows the partial autocorrelation function ofthe daily
incidence rates. The partial autocorrelation oforder k is the cor-
relation between y, and y,-, after controlling for yj, . . .yj-k + ,. The
magnitude ofeach bar represents the partial correlation coeffi-
cient at that lag. Figure 2 shows the partial autocorrelation func-
tion of residuals from an ordinary logistic regression model for
cough incidence including temperature, temperature squared,
and sulfur dioxide concentration. Autocorrelation is reduced by
inclusion of the explanatory variables, but there is a strong in-
dication of, at a minimum, first- and second-order autocorrela-
tion in the residuals. The autocorrelation may be due to
unmeasured time-dependent covariates. Epidemic effects, which
can be represented as lagged values of prevalence, may also be
important. The second panel in Figure 2 shows the partial
autocorrelation function after fitting a regression modell with

FIGURE 1. Sample correlation function of the daily incidence rates of cough.

first-order autoregssive errors to the data (using the multiplica-
ive AR model). This plot suggests the presence of second order
autocorrelation.
As noted in the modeling section, this autocorrelation can be

modeled in several ways. Three approaches considered here are
the additive AR model, the multiplicative AR model, and the
Liang-Zeger model, which were discussed previously. We have
also considered the possibility that the symptom probabilities
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FIGURE 2. The left panel shows the sample partial autocrrelation function of
the residuals from an ordinary logistic regression of cough incidence rates
on temperture, the square oftemperature, and sulfer diozide concentrations.
The right panel shows the autocorrelation function when the logistic regres-
sion function is modified to assume that the errors have first-order
autoregressive error structure.

185



SCHWARTZETAL.

Tible 1. Regression codlicients for cough incidence on sulfur
dioxide in 1btertown, MA, for different model specifications.
Model 5so. SE Comments

Ordinary logistic 0.0133 0.0052

Models with twv autoregressive terms
Multiplicative AR 0.0116 0.0053
Liang and Zeger (8) 0.0132 0.0059 AR(l)

insignificant

Additive AR 0.0117 0.0053 AR(1)
insignificant

Lagged prevalence 0.010 0.0056 Lged prevalence
[No AR(1) term] insignificant

Reduced models
Liang and Zeger (8) 0.0130 0.0059

[AR(2) only]
Additive AR 0.0113 0.0052
[AR(2) onlyl

depend on the previous day's disease prevalence.
Table 1 shows the effect ofchoosing several different models

for the error structure on the regression coefficient for sulfur
dioxide concentration. Sulfur dioxide was a significant predic-
tor ofcough incidence in an ordinary logistic regression model
assuming independent errors. Models that adjusted for auto-
regressive errors tended to reduce the statistical significance of
the sulfur dioxide coefficient. In the multiplicative AR model,
a first-order autoregressive term was significant but lagged
prevalence was not, suggesting that the autoregressive model
satisfactorily explains the dependency ofthe incidence rate on the
previous day's outcomes. In the Liang and Zeger and additiveAR
models, the first-order term was not significant (Table 1). Since
these models are slightly diiferent, it is not surprising that they
give different results for the order of the autoregression.

Perhaps themost important feature ofTable 1 is the consisten-
cyamong theesimated regression coefficients andstdard errors

for sulfurdioxide obtainedby differentmethods. Eventhough the
autocorrelationamong successivedayswasofmoderate sizeand
highly significant, different approaches to modeling this autocor-
relation, including ignoring it entirely (as ordinarily logistic
regression does), had little effect on the results.

Individual Effects
One potentially attractive way to account for individual

variability is to peform separate regressions on each subject. We
call this the Korn and Whittemore (KW) approach. Despite the
reservations described in the methods section, we examined this
approach for our data. KW also allowed us to examine the
relations between individual intercepts and child-specific
covariates, such as presence ofchronic respiratory disease and
parental smoking. In Watertown, the weighted mean of the
individual sulfur dioxide coefficients for cough incidence was
close to the coefficient obtained from the analysis of the daily
incidence rates. In Kingston and St. Louis, the KW approach
showed a stronger association than the grouped analysis. This
raises the possibility that methods allowing individual variation
to weak effects are more sensitive than methods for analyzing
pooled data. Nevertheless, the low incidence rates made KW
inappropriate for these data. The individual regressions failed

TIble 2. Impact ofcontrofling for heterogeneity on
the relationship between nitrogen dioxide and phlegm.

Basic model Stratified model
Variable* a a
Intercept -2.98 -2.77
Temperature -0.0124 -0.0170
NO2 0.756 0.948
Smoking - 0.199

*AIl variables significant, p < 0.01.

to converge for about 10% of the subjects. In the remaining
subjects, the distributions of the coefficients were clearly not
normal. Even after adjusting for the different weights assigned
to different coefficients, a highly skewed distribution remained.
Therefore, estimation and testing procedures based on normality
assumptions do not apply.
For low incidence data, the stratification approach seems

better suited. To illustrate this, we use data from the nurses diary
study. In Poisson models of subject covariates, smoking, but
not prior illness/allergies, was significantly associated with the
number of incidents ofphlegm each subject suffered. The data
were therefore stratified into nonsmokers, subjects with
pack-years less than or equal to the median, and subjects with
more than the median number of pack-years. Logistic re-
gressions, as described in the section on heterogeneity, were then
estimated. Nitrogen dioxide was the only poilutant significantly
associated with phlegm. Table 2 compares the results of an
simple logistic regression with those of a logistic regression
stratified on smoking. Note that here again, controlling for
subject heterogeneity inceased the estimated effect size for
pollution.

Other Temporal Effects
lag Effects. Any effect ofpollution exposure on symptoms is

not necessarily contemporaneous. The lag between exposure and
symptom may also differ among the pollutants, whose modes of
action vary. For instance, Dockery et al. (11) reported a lag of 1
to 2 weeks between exposure to high levels of particulates and
reductions in lung function. In contrast, Spektor et al. (12) and
Kinney et al. (13) reported that high ozone exposure causes
alniost immediate reductions in lung function. To explore the lag
relationship in the diary data, we used simple logistic regression
with no autoregressive components. Temperature was modeled
with a linear and quadratic term, as suggested by exploratory
plots and analyses. The concurrent and lagged pollutant
measures for up to 14 days lag were examined individually. Ifthe
pattern in these individual regressions suggested a model using
a weighted linear combination of pollutant concentrations on
several previous days, such a distributed lag model was also fit.
This approach was applied in each of three cities (Watertown,
Kingston-Harriman, and St. Louis).
These analyses showed the strongest associations between up-

per respiratory illness and acid measurements from a continuous
sulfuric acid sampler (lible 3 shows the regression coefficients
at 0, 1, 2, and 3 day lags). The acid measurements on the two
previous days had the largest regression coefficients. A model us-
ing a weighted combination of concentrations on the three
previous days had the largest coefficient, about twice as large as
that for any single day.
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Thble 3. Coefficients of lagged effects of sulfuric acid
concentrations on upper respiratory symptoms.

Lag period Distributed
Location 0 1 2 3 lag
Watertown 0.431 0.683 0.690 0.076 1.28
Kingston-Harriman 0.121 0.461 0.258 0.232 1.16
St. Louis 0.171 0.848 0.524 0.227 2.34

Table 4. Logistic regression for phlegm incidence incorporating
autocorrelation and heterogeneity.

Variable ,B SE p-Value
Intercept -2.379 0.244 < 0.0001
NO2 0.843 0.343 0.0140
Temperature -0.0169 0.0037 < 0.0001
Monday 0.626 0.059 < 0.0001
Smoking 0.207 0.059 < 0.001

Day-of-the-Week Effects. Symptom reporting can be
elevated on Mondays and depressed on weekends. This is a par-
ticular type of serial correlation that can be modeled by AR
terms, but is often better dealt with by day-of-the-week dummy
variables. We investigated this issue in the nurses diary, and
found a significant elevation in reporting phlegm on Monday.
No other day was significant. Table 4 shows a final model com-
bining day-of-the-week effects, stratification by smoking, and
a Liang-Zeger approach to modeling the autocorrelation in the
covariance. Current exposure, rather than lagged exposure, was
the better predictor in this case.

Conclusions
The analyses described in this report have shown that rates of

incidence ofsymptoms among participants in a diary study tend
to be autocorrelated, perhaps because ofepidemic effects and the
effects ofomitted covariates on response rates. Moreover, our
work and the work of others have shown that subjects have
heterogeneous response rates. Analyses ofdiary data should ex-
amine the effects of both autocorrelation and heterogeneity on
estimated regression coefficients and their standard errors.
These results do show significant relationships between air

pollution and symptom reporting, after incorporation of auto-
correlation and heterogeneity. The results indicate that daily

diaries can be an important tool for examining the relationship
between air pollution and human morbidity.
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